Cancer Researchers for Today and Tomorrow: Precision Medicine in Cancer Prevention

Douglas R. Lowy
Laboratory of Cellular Oncology, Center for Cancer Research
National Cancer Institute, National Institutes of Health

CABTRAC Retreat
October 18, 2014

The views expressed are my own and do not necessarily reflect those of NCI/NIH
Outline of Presentation

• Precision medicine is relevant to cancer prevention & screening
• HPV-based screening: an example of precision medicine in screening
• The HPV vaccine: an example of molecularly targeted prevention
Disclosures

- The National Institutes of Health (NIH) has patents on papillomavirus L1 virus-like particle (VLP) vaccine technology. I am an inventor of this technology.

- The NIH has licensed the L1 VLP technology to Merck and GlaxoSmithKline, the two companies with commercial versions of the vaccine.

- *I will discuss potential off-label use of the FDA-approved vaccines.*
Some Professional Highlights

• Education: Non-science major as undergraduate; medical school (MD); internal medicine; dermatology

• Research training: Mouse retroviruses, NIH (“yellow beret”); on-the-job

• Principal investigator, intramural program, NCI/NIH
 – Advantages: long-term stable resources; retrospective review; collaborations strongly encouraged; individual & team science; easy to go from “bench to bedside”
 – Disadvantages: difficult to have a large lab
 – My main research areas: HPV; growth regulatory genes; molecular aspects of cancer pathogenesis

• Positions: Principal investigator; Lab Chief; Deputy Director, NCI intramural program; Deputy Director, NCI
Precision (personalized) Medicine

• Interventions to prevent, diagnose, or treat a disease (e.g., cancer), based on a molecular and mechanistic understanding of the causes, pathogenesis, and/or pathology of the disease

• Conventional wisdom: Treatment is the main focus of precision medicine
Precision Medicine in Prevention

• The genetic and epigenetic changes in normal and premalignant tissues are less complex than in cancer

• Therefore, if you like targeted interventions for the treatment of cancer, you will love targeted interventions for the prevention of cancer
Targeted Interventions for Cancer Treatment

• Therapeutic agents that target a specific molecular abnormality in cancer have several shortcomings

• The abnormality may be present in only some of the cancers; e.g., EGFR mutations in lung adenocarcinoma

• Only some patients with the molecular abnormality may respond to the targeted intervention

• Even among those patients who do respond, many become resistant to the treatment, attributable to secondary mutation of the target or to bypass genetic/epigenetic changes
Primary & Secondary Prevention

Primary Prevention: Vaccination Sunscreen

Secondary Prevention: Screening HCV antiviral

Treatment (tertiary prevention)

Normal \rightarrow Pre-cancer \rightarrow Cancer
Targeted Interventions: Primary Prevention

• Primary prevention can target the cause of cancer; e.g., HBV vaccination, HPV vaccination

• *Primary prevention can potentially target all cases attributable to the cause*

 – Hepatocellular cancer attributable to HBV infection is heterogeneous; it is difficult to imagine treating all of these cancer cases with a single agent

 – HBV infection is the necessary cause of these cancers and can be targeted for prevention by a single agent

• Primary prevention rarely results in resistance
Cancer Screening: Secondary Prevention

• Why are screening for colorectal cancer and for cervical cancer more effective compared with screening for breast, prostate, and lung cancer?

• Doug’s answer: because in colorectal and cervical cancer, there are widely accepted pre-malignant lesions, which are the main focus of screening in these cancer types, leading to substantial reductions in incidence and mortality

• For breast, prostate, and lung cancer, screening is for early cancer, leading to an increase in incidence (because of screening) and more limited reductions in mortality

• Doug’s implication: We need more research to identify and validate pre-malignant lesions in cancer (not just in those cancers for which we already have screening programs)

• It might be possible to use animal models of cancer to study prevention
Cancer Screening: From Pattern Recognition to Molecular Diagnosis

• The primary (initial) *screening tests for breast and lung cancer* (mammography, helical CT) depend on empiric pattern recognition

• The primary *screening test for prostate cancer* (PSA) is a biochemical assay not directly related to cancer

• Primary *screening tests for colorectal cancer* have either been an indirect chemical test (fetal occult blood) or pattern recognition (sigmoidoscopy, colonoscopy); a new molecular test based on hemoglobin plus molecular abnormalities (K-ras + methylation of NDRG4 and BMP3) found in colorectal lesions

• Primary *screening tests for cervical cancer* have gone from empiric pattern recognition (pap smear) to HPV-based testing
Cervical Cancer is Attributable to Multiple HPV Types; HPV16 Predominates

Adapted from Munoz et al, Int J Cancer 111: 278-85, 2004
Cervical cancer rates (USA): Decreasing squamous cell cancer, stable adenocarcinoma

Squamous cell: blacks
Squamous cell: whites

Adenocarcinoma: whites
Adenocarcinoma: blacks
Adenosquamous: blacks & whites

HPV testing is more sensitive than cytology

Pooled cervical cancer incidence from 4 controlled trials of cytology (control arm) vs. HPV testing (experimental arm): POBaSCAM, NTCC, ARTISTIC, and Swedescreeen

HPV testing reduces adenocarcinoma
More efficiently than does cytology

* Ratio of incidence with HPV testing vs. incidence with cytology

<table>
<thead>
<tr>
<th>Morphology</th>
<th>Pooled rate ratio* (95% CI)</th>
<th>I^2 (p for heterogeneity between studies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Squamous-cell carcinoma</td>
<td>0.78 (0.49–1.25)</td>
<td>0.0% (0.84)</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>0.31 (0.14–0.69)</td>
<td>0.0% (0.59)</td>
</tr>
<tr>
<td>Adenocarcinoma vs squamous-cell carcinoma</td>
<td>0.34 (0.12–0.90)</td>
<td>..</td>
</tr>
</tbody>
</table>

Ronco et al, Lancet 383: 524-33, 2014
Worldwide Incidence of Cancers Attributable to Infectious Agents

- Infectious agents cause: ~1/6 of cancers worldwide; ~1/4 of cancers in developing world; ~1/12 of cancers in industrialized world
- FDA-approved vaccines have been developed against HPV & HBV, antivirals against HCV

Implications of Identifying HPV as The Main Cause of Cervical Cancer

• 1983/4: Identification of HPV16/18; zur Hausen and colleagues - Nobel Prize 2008

• Natural history of HPV infection/pathogenesis of cervical cancer

• Identification of other HPV-associated cancers
Annual number of cases

- Cervical cancer represents ~10% of all female cancers worldwide;
- ~14% of all female cancers in developing world

Developing World: Incidence of HPV-Associated Cancers

- Developing world: >90% of HPV-associated cancer is cervical cancer
- ~85% of global cervical cancer occurs in developing world; ~88% of deaths

- Pap screening has reduced cervical cancer incidence by ~80%
- No approved screening tests for other HPV-associated cancers
- Incidence of HPV-positive oropharynx cancer 1988-2004 increased >3-fold

Rapid Acquisition of Genital HPV Infection in Young Women With Their First Sexual Partner

US (18-22 years old; N=130)

UK (15-19 years old; N=242)

20% in 4 months

45% in 26 months

UK data adapted from Collins et al, BJOG 109: 96-98, 2002
US data adapted from Winer et al, J Inf Dis 197:279-282, 2008
Natural History of Cervical HPV Infection

HPV infection

Spontaneous regression

20%-30% HPV 16/18

60%-70% HPV 16/18

Many years (15++)

Sub-clinical HPV infection

Low-grade precursor

High-grade precursor

Cancer

Annual US Cases

~20,000,000

~3,000,000

~300,000

~12,000
Etiology-based Screening and Vaccination

• HPV-based cervical cancer screening
 – HPV DNA (Hybrid Capture [Digene/Qiagen]; Cervista [Hologic]); Cobas (Roche); Aptima (Gen-Probe)
 – In conjunction with cytology (Pap) testing or as primary screening test (Cobas)

• HPV-based interventions
 – Preventive vaccine
 – therapeutic vaccine, antivirals, etc?
Laboratory of Cellular Oncology, CCR, NCI

Patricia Day Jeffrey Roberts
Rhonda Kines Susana Pang
Cynthia Thompson Nicolas Cuburu
Alessandra Handisurya Rebecca Cerio

John Schiller

Chris Buck, Diana Pastrana - LCO, CCR, NCI Bethesda
Peter Choyke, Marcelino Bernardo - Molecular Imaging, CCR, NCI, Bethesda
Aimee Kreimer, Allan Hildesheim, Mark Schiffman, Mahboobeh Saeafian, Ligia Pinto - DCEG, NCI, Bethesda
Diane Solomon – DCP, NCI, Bethesda
Benes Trus - Center for Information Technology, NIH, Bethesda
Richard Roden, Subhashini Jagu, Clayton Harro - Johns Hopkins, Baltimore
Rolando Herrero – IARC, Lyon, France
Bryce Chackerian - University of New Mexico
Reinhard Kirnbauer - University of Vienna, Austria
Françoise Breitburd, Gerard Orth – Institut Pasteur, Paris